Processing Math: Done
Lösung 2.2:4b
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
We could substitute <math>u=x-1</math>, but we would then still have the problem of the second term, 3, in the denominator. Instead, we take out a factor 3 from the denominator, | We could substitute <math>u=x-1</math>, but we would then still have the problem of the second term, 3, in the denominator. Instead, we take out a factor 3 from the denominator, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\int \frac{dx}{(x-1)^2+3} | \int \frac{dx}{(x-1)^2+3} | ||
&= \int \frac{dx}{3\bigl(\tfrac{1}{3}(x-1)^2+1\bigr)}\\[5pt] | &= \int \frac{dx}{3\bigl(\tfrac{1}{3}(x-1)^2+1\bigr)}\\[5pt] | ||
Zeile 9: | Zeile 9: | ||
and move a factor <math>\tfrac{1}{3}</math> into the square <math>(x-1)^2</math>, | and move a factor <math>\tfrac{1}{3}</math> into the square <math>(x-1)^2</math>, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\frac{1}{3}\int \frac{dx}{\tfrac{1}{3}(x-1)^2+1} = \frac{1}{3}\int \frac{dx}{\Bigl(\dfrac{x-1}{\sqrt{3}}\Bigr)^2+1}\,\textrm{.}</math>}} |
Now, we substitute <math>u = (x-1)/\!\sqrt{3}</math> and get rid of all the problems at once, | Now, we substitute <math>u = (x-1)/\!\sqrt{3}</math> and get rid of all the problems at once, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\frac{1}{3}\int \frac{dx}{\Bigl(\dfrac{x-1}{\sqrt{3}}\Bigr)^2+1} | \frac{1}{3}\int \frac{dx}{\Bigl(\dfrac{x-1}{\sqrt{3}}\Bigr)^2+1} | ||
&= \left\{\begin{align} | &= \left\{\begin{align} |
Version vom 13:02, 10. Mär. 2009
We could substitute
![]() ![]() ![]() ![]() ![]() |
and move a factor
![]() ![]() ![]() ![]() ![]() |
Now, we substitute 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |