Processing Math: Done
Lösung 2.3:2c
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
If we use the definition of <math>\tan x</math> and write the integral as | If we use the definition of <math>\tan x</math> and write the integral as | ||
- | {{ | + | {{Abgesetzte Formel||<math>\int\tan x\,dx = \int\frac{\sin x}{\cos x}\,dx</math>}} |
we see that the numerator <math>\sin x</math> is the derivative of the denominator (apart from the minus sign). Hence, the substitution <math>u=\cos x</math> will work, | we see that the numerator <math>\sin x</math> is the derivative of the denominator (apart from the minus sign). Hence, the substitution <math>u=\cos x</math> will work, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\int\frac{\sin x}{\cos x}\,dx | \int\frac{\sin x}{\cos x}\,dx | ||
&= \left\{\begin{align} | &= \left\{\begin{align} |
Version vom 13:04, 10. Mär. 2009
If we use the definition of
![]() ![]() |
we see that the numerator
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Note: cosx
+C
=0