Processing Math: Done
Lösung 3.1:1f
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
Let's begin by calculating some powers of ''i'', | Let's begin by calculating some powers of ''i'', | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
i^2 &= i\cdot i = -1\,,\\[5pt] | i^2 &= i\cdot i = -1\,,\\[5pt] | ||
i^3 &= i^2\cdot i = (-1)\cdot i = -i\,,\\[5pt] | i^3 &= i^2\cdot i = (-1)\cdot i = -i\,,\\[5pt] | ||
Zeile 9: | Zeile 9: | ||
Now, we observe that because <math>i^4=1</math>, we can try to factorize <math>i^{11}</math> and <math>i^{20}</math> in terms of <math>i^4</math>, | Now, we observe that because <math>i^4=1</math>, we can try to factorize <math>i^{11}</math> and <math>i^{20}</math> in terms of <math>i^4</math>, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
i^{11} &= i^{4+4+3} = i^4\cdot i^4\cdot i^3 = 1\cdot 1 \cdot (-i) = -i\,,\\[5pt] | i^{11} &= i^{4+4+3} = i^4\cdot i^4\cdot i^3 = 1\cdot 1 \cdot (-i) = -i\,,\\[5pt] | ||
i^{20} &= i^{4+4+4+4+4} = i^4\cdot i^4\cdot i^4\cdot i^4\cdot i^4 = 1\cdot 1 \cdot 1\cdot 1 \cdot 1 = 1\,\textrm{.} | i^{20} &= i^{4+4+4+4+4} = i^4\cdot i^4\cdot i^4\cdot i^4\cdot i^4 = 1\cdot 1 \cdot 1\cdot 1 \cdot 1 = 1\,\textrm{.} | ||
Zeile 16: | Zeile 16: | ||
The answer becomes | The answer becomes | ||
- | {{ | + | {{Abgesetzte Formel||<math>i^{20}+i^{11}=1-i\,\textrm{.}</math>}} |
Version vom 13:05, 10. Mär. 2009
Let's begin by calculating some powers of i,
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Now, we observe that because
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
The answer becomes