Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 3.1:3

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
In order to be able to see the expression's real and imaginary parts directly, we treat it as an ordinary quotient of two complex numbers and multiply top and bottom by the complex conjugate of the denominator,
In order to be able to see the expression's real and imaginary parts directly, we treat it as an ordinary quotient of two complex numbers and multiply top and bottom by the complex conjugate of the denominator,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\frac{3+i}{2+ai}
\frac{3+i}{2+ai}
&= \frac{(3+i)(2-ai)}{(2+ai)(2-ai)}\\[5pt]
&= \frac{(3+i)(2-ai)}{(2+ai)(2-ai)}\\[5pt]

Version vom 13:06, 10. Mär. 2009

In order to be able to see the expression's real and imaginary parts directly, we treat it as an ordinary quotient of two complex numbers and multiply top and bottom by the complex conjugate of the denominator,

3+i2+ai=(3+i)(2ai)(2+ai)(2ai)=22(ai)2323ai+i2ai2=4+a26+a+(23a)i=6+a4+a2+4+a223ai.

The expression has real part equal to zero when 6+a=0, i.e. a=6.


Note: Think about how to solve the problem if a is not a real number.