Processing Math: Done
Lösung 3.3:1c
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 5: | Zeile 5: | ||
This gives | This gives | ||
- | {{ | + | {{Abgesetzte Formel||<math>4\sqrt{3}-4i = 8\Bigl(\cos\Bigl(-\frac{\pi}{6}\Bigr) + i\sin\Bigl(-\frac{\pi}{6}\Bigr)\Bigr)</math>}} |
and then we get, on using de Moivre's formula, | and then we get, on using de Moivre's formula, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\bigl(4\sqrt{3}-4i\bigr)^{22} | \bigl(4\sqrt{3}-4i\bigr)^{22} | ||
&= 8^{22}\Bigl(\cos\Bigl(22\cdot\Bigl(-\frac{\pi}{6}\Bigr)\Bigr) + i\sin\Bigl(22\cdot\Bigl(-\frac{\pi}{6}\Bigr)\Bigr)\Bigr)\\[5pt] | &= 8^{22}\Bigl(\cos\Bigl(22\cdot\Bigl(-\frac{\pi}{6}\Bigr)\Bigr) + i\sin\Bigl(22\cdot\Bigl(-\frac{\pi}{6}\Bigr)\Bigr)\Bigr)\\[5pt] |
Version vom 13:11, 10. Mär. 2009
The calculation follows a fairly set pattern. We write the number 3−4i


This gives
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
and then we get, on using de Moivre's formula,
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |