Processing Math: Done
Lösung 3.3:3d
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 2: | Zeile 2: | ||
<math>i</math> in front of <math>z^2</math>, | <math>i</math> in front of <math>z^2</math>, | ||
- | {{ | + | {{Abgesetzte Formel||<math>i\Bigl(z^2+\frac{2+3i}{i}z-\frac{1}{i}\Bigr)\,\textrm{.}</math>}} |
Then, simplify the complex fractions by multiplying top and bottom by <math>-i</math> (the denominator's complex conjugate), | Then, simplify the complex fractions by multiplying top and bottom by <math>-i</math> (the denominator's complex conjugate), | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
i\Bigl(z^2+\frac{(2+3i)\cdot (-i)}{i\cdot (-i)}z-\frac{1\cdot (-i)}{i\cdot (-i)}\Bigr) | i\Bigl(z^2+\frac{(2+3i)\cdot (-i)}{i\cdot (-i)}z-\frac{1\cdot (-i)}{i\cdot (-i)}\Bigr) | ||
&= i\Bigl(z^2+\frac{-2i+3}{1}z-\frac{-i}{1}\Bigr)\\[5pt] | &= i\Bigl(z^2+\frac{-2i+3}{1}z-\frac{-i}{1}\Bigr)\\[5pt] | ||
Zeile 14: | Zeile 14: | ||
Now we are ready to complete the square of the second-degree expression inside the bracket, | Now we are ready to complete the square of the second-degree expression inside the bracket, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
i\bigl(z^2+(3-2i)z+i\bigr) | i\bigl(z^2+(3-2i)z+i\bigr) | ||
&= i\Bigl(\Bigl(z+\frac{3-2i}{2}\Bigr)^2 - \Bigl(\frac{3-2i}{2}\Bigr)^2+i\Bigr)\\[5pt] | &= i\Bigl(\Bigl(z+\frac{3-2i}{2}\Bigr)^2 - \Bigl(\frac{3-2i}{2}\Bigr)^2+i\Bigr)\\[5pt] |
Version vom 13:12, 10. Mär. 2009
Before we can complete the square of the expression, we need to take out the factor
![]() ![]() |
Then, simplify the complex fractions by multiplying top and bottom by
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Now we are ready to complete the square of the second-degree expression inside the bracket,
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |