Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Lösung 3.3:5b

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
Complete the square of the left-hand side,
Complete the square of the left-hand side,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\Bigl(z-\frac{2-i}{2}\Bigr)^2-\Bigl(\frac{2-i}{2}\Bigr)^2+3-i &= 0\,,\\[5pt]
\Bigl(z-\frac{2-i}{2}\Bigr)^2-\Bigl(\frac{2-i}{2}\Bigr)^2+3-i &= 0\,,\\[5pt]
\Bigl(z-\frac{2-i}{2}\Bigr)^2-\Bigl(1-i+\frac{1}{4}i^2\Bigr)+3-i&=0\,,\\[5pt]
\Bigl(z-\frac{2-i}{2}\Bigr)^2-\Bigl(1-i+\frac{1}{4}i^2\Bigr)+3-i&=0\,,\\[5pt]
Zeile 10: Zeile 10:
Taking the square root then gives that the solutions are
Taking the square root then gives that the solutions are
-
{{Displayed math||<math>z-\frac{2-i}{2} = \pm\frac{3}{2}\,i\quad \Leftrightarrow \quad z=\left\{ \begin{align}
+
{{Abgesetzte Formel||<math>z-\frac{2-i}{2} = \pm\frac{3}{2}\,i\quad \Leftrightarrow \quad z=\left\{ \begin{align}
&1+i\,,\\
&1+i\,,\\
&1-2i\,\textrm{.}
&1-2i\,\textrm{.}

Version vom 13:13, 10. Mär. 2009

Complete the square of the left-hand side,

z22i222i2+3iz22i21i+41i2+3iz22i21+i+41+3iz22i2+49=0=0=0=0.

Taking the square root then gives that the solutions are

z22i=23iz=1+i12i. 

Finally, we substitute the solutions into the equation and check that it is satisfied

z=1+i:z2(2i)z+(3i)z=12i:z2(2i)z+(3i)=(1+i)2(2i)(1+i)+3i=1+2i+i2(2+2iii2)+3i=1+2i12i1+3i=0=(12i)2(2i)(12i)+3i=14i+4i2(24ii+2i2)+3i=14i42+5i+2+3i=0.