Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 3.1:1e

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
A suitable first step can be to work out the square term, <math>(2-i)^2</math>, by expanding it,
-
A suitable first step can be to work out the square term, <math>(2-i)^2</math>, with the help of the square rule:
+
-
{{NAVCONTENT_STEP}}
+
-
<math>\begin{align}(2-i)^2&=2^2-2\cdot 2i + i^2=4-4i+i^2\\
+
-
&=4-4i-1=3-4i\end{align}</math>
+
-
{{NAVCONTENT_STEP}}
+
{{Displayed math||<math>\begin{align}
-
After that, we calculate the remaining product:
+
(2-i)^2 &= 2^2 - 2\cdot 2i + i^2\\[5pt]
-
{{NAVCONTENT_STEP}}
+
&= 4-4i+i^2\\[5pt]
-
<math>\begin{align}(1+i)(3-4i)&=1\cdot3-1\cdot 4i +i \cdot 3 - i\cdot 4i\\
+
&= 4-4i-1\\[5pt]
-
&=3-4i+3i-4i^2\\
+
&= 3-4i\,\textrm{.}
-
&=3+(-4+3)i-4\cdot (-1)\\
+
\end{align}</math>}}
-
&=3-i+4\\
+
 
-
&=7-i.\end{align}</math>
+
After that, we calculate the remaining product,
-
{{NAVCONTENT_STOP}}
+
 
 +
{{Displayed math||<math>\begin{align}
 +
(1+i)(3-4i) &= 1\cdot3 - 1\cdot 4i + i\cdot 3 - i\cdot 4i\\[5pt]
 +
&= 3-4i+3i-4i^2\\[5pt]
 +
&= 3+(-4+3)i-4\cdot (-1)\\[5pt]
 +
&= 3-i+4\\[5pt]
 +
&= 7-i\,\textrm{.}
 +
\end{align}</math>}}

Version vom 15:00, 29. Okt. 2008

A suitable first step can be to work out the square term, (2i)2, by expanding it,

(2i)2=2222i+i2=44i+i2=44i1=34i.

After that, we calculate the remaining product,

(1+i)(34i)=1314i+i3i4i=34i+3i4i2=3+(4+3)i4(1)=3i+4=7i.