Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 3.1:2a

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
A quotient of two complex numbers is calculated by multiplying the top and bottom of the fraction by the complex conjugate of the denominator,
-
A quotient of two complex numbers is calculated by multiplying the top and bottom of the fraction by the complex conjugate of the denominator:
+
-
<math>\frac{3-2i}{1+i} = \frac{3-2i}{1+i}\frac{1-i}{1-i}.</math>
+
{{Displayed math||<math>\frac{3-2i}{1+i} = \frac{3-2i}{1+i}\cdot\frac{1-i}{1-i}\,\textrm{.}</math>}}
-
{{NAVCONTENT_STEP}}
+
-
Then, the conjugate rule gives that the new denominator is a real number
+
-
<math>\begin{align}\frac{3-2i}{1+i}\frac{1-i}{1-i}&=\frac{(3-2i)(1-i)}{(1+i)(1-i)}\\
+
Then, the formula for the difference of two squares gives that the new denominator is a real number,
-
&=\frac{(3-2i)(1-i)}{1^2-i^2}\\
+
-
&=\frac{(3-2i)(1-i)}{1+1}\\
+
-
&=\frac{(3-2i)(1-i)}{2}\end{align}</math>
+
-
{{NAVCONTENT_STEP}}
+
-
All that remains is to multiply together what is in the numerator:
+
 +
{{Displayed math||<math>\begin{align}
 +
\frac{3-2i}{1+i}\cdot\frac{1-i}{1-i}
 +
&= \frac{(3-2i)(1-i)}{(1+i)(1-i)}\\[5pt]
 +
&= \frac{(3-2i)(1-i)}{1^2-i^2}\\[5pt]
 +
&= \frac{(3-2i)(1-i)}{1+1}\\[5pt]
 +
&= \frac{(3-2i)(1-i)}{2}\,\textrm{.}
 +
\end{align}</math>}}
-
<math>\begin{align}\frac{(3-2i)(1-i)}{2}&=\frac{3\cdot 1 -3\cdot i - 1\cdot 2i -2i\cdot(-i)}{2}\\
+
All that remains is to multiply together what is in the numerator,
-
&=\frac{3-3i-2i+2i^2}{2}\\
+
-
&=\frac{3-(3+2)i+2(-1)}{2}\\
+
-
&=\frac{1-5i}{2}\\
+
-
&=\frac{1}{2}-\frac{5}{2}i.\end{align}</math>
+
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\begin{align}
 +
\frac{(3-2i)(1-i)}{2}
 +
&= \frac{3\cdot 1 -3\cdot i - 2i\cdot 1 - 2i\cdot(-i)}{2}\\[5pt]
 +
&= \frac{3-3i-2i+2i^2}{2}\\[5pt]
 +
&= \frac{3-(3+2)i+2\cdot (-1)}{2}\\[5pt]
 +
&= \frac{1-5i}{2}\\[5pt]
 +
&= \frac{1}{2}-\frac{5}{2}\,i\,\textrm{.}
 +
\end{align}</math>}}

Version vom 15:15, 29. Okt. 2008

A quotient of two complex numbers is calculated by multiplying the top and bottom of the fraction by the complex conjugate of the denominator,

1+i32i=1+i32i1i1i.

Then, the formula for the difference of two squares gives that the new denominator is a real number,

1+i32i1i1i=(1+i)(1i)(32i)(1i)=12i2(32i)(1i)=1+1(32i)(1i)=2(32i)(1i).

All that remains is to multiply together what is in the numerator,

2(32i)(1i)=2313i2i12i(i)=233i2i+2i2=23(3+2)i+2(1)=215i=2125i.