Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Lösung 3.2:1b

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
 
We can easily calculate <math>z+u</math> and <math>z-u</math>,
We can easily calculate <math>z+u</math> and <math>z-u</math>,
-
<math>\begin{align}z+u&=2+i+(-1-2i)=2-1+(1-2)i=1-i,\\
+
{{Displayed math||<math>\begin{align}
-
z-u&=2+i-(-1-2i)=2+1+(1+2)i=3+3i,\end{align}</math>
+
z+u &= 2+i+(-1-2i) = 2-1+(1-2)i = 1-i,\\[5pt]
 +
z-u &= 2+i-(-1-2i) = 2+1+(1+2)i = 3+3i,
 +
\end{align}</math>}}
and then mark them on the complex plane.
and then mark them on the complex plane.
Zeile 15: Zeile 16:
[[Image:3_2_1_b2.gif|center]]
[[Image:3_2_1_b2.gif|center]]
-
or interpret <math>z-u</math> from the vector relation
+
or interpret <math>z-u</math> from the vector relation
-
<math>z=(z-u)+u</math>
+
{{Displayed math||<math>z=(z-u)+u\,,</math>}}
i.e. <math>z-u</math> is the vector we add to <math>u</math> to arrive at <math>z</math>.
i.e. <math>z-u</math> is the vector we add to <math>u</math> to arrive at <math>z</math>.
[[Image:3_2_1_b3.gif|center]]
[[Image:3_2_1_b3.gif|center]]
- 
-
{{NAVCONTENT_STOP}}
 

Version vom 09:21, 29. Okt. 2008

We can easily calculate z+u and zu,

z+uzu=2+i+(12i)=21+(12)i=1i=2+i(12i)=2+1+(1+2)i=3+3i

and then mark them on the complex plane.

An alternative is to view z and u as vectors and z+u as a vector addition of z and u.

We can either view the vector subtraction zu as z+(u),

or interpret zu from the vector relation

z=(zu)+u

i.e. zu is the vector we add to u to arrive at z.