Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 2.1:3b

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
As the integral stands, it is not so easy to see what the primitive functions are, but if we use the formula for double angles,
As the integral stands, it is not so easy to see what the primitive functions are, but if we use the formula for double angles,
 +
{{Displayed math||<math>\int 2\sin x\cos x\,dx = \int \sin 2x\,dx</math>}}
-
<math>\int{2\sin x\cos x}\,dx=\int{\sin 2x}\,dx</math>
+
we obtain a standard integral where we can write down the primitive functions directly,
 +
{{Displayed math||<math>\int \sin 2x\,dx = -\frac{\cos 2x}{2}+C\,,</math>}}
-
we obtain a standard integral where we can write down the primitive functions directly:
+
where <math>C</math> is an arbitrary constant.
-
 
+
-
 
+
-
<math>\int{\sin 2x}\,dx=-\frac{\cos 2x}{2}+C</math>
+
-
 
+
-
 
+
-
where
+
-
<math>C</math>
+
-
is an arbitrary constant.
+

Version vom 13:13, 21. Okt. 2008

As the integral stands, it is not so easy to see what the primitive functions are, but if we use the formula for double angles,

2sinxcosxdx=sin2xdx 

we obtain a standard integral where we can write down the primitive functions directly,

sin2xdx=2cos2x+C 

where C is an arbitrary constant.