Processing Math: Done
Lösung 2.1:3b
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
As the integral stands, it is not so easy to see what the primitive functions are, but if we use the formula for double angles, | As the integral stands, it is not so easy to see what the primitive functions are, but if we use the formula for double angles, | ||
+ | {{Displayed math||<math>\int 2\sin x\cos x\,dx = \int \sin 2x\,dx</math>}} | ||
- | + | we obtain a standard integral where we can write down the primitive functions directly, | |
+ | {{Displayed math||<math>\int \sin 2x\,dx = -\frac{\cos 2x}{2}+C\,,</math>}} | ||
- | + | where <math>C</math> is an arbitrary constant. | |
- | + | ||
- | + | ||
- | <math> | + | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | is an arbitrary constant. | + |
Version vom 13:13, 21. Okt. 2008
As the integral stands, it is not so easy to see what the primitive functions are, but if we use the formula for double angles,
![]() ![]() |
we obtain a standard integral where we can write down the primitive functions directly,
![]() ![]() |
where