Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 3.3:3a

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
When we complete the square of the second degree expression,
+
When we complete the square of the second degree expression, <math>z^2+2z+3</math>, we start with the forumla
-
<math>z^{2}+2z+3</math>
+
-
we start with the squaring rule
+
-
 
+
-
 
+
-
<math>\left( z+a \right)^{2}=z^{2}+2az+a^{2}</math>
+
 +
{{Displayed math||<math>(z+a)^2 = z^2+2az+a^2</math>}}
which we write as
which we write as
 +
{{Displayed math||<math>(z+a)^2-a^2 = z^2+2az</math>}}
-
<math>\left( z+a \right)^{2}-a^{2}=z^{2}+2az</math>
+
and adapt the constant to be <math>a=1</math> so that the terms <math>z^2+2z</math> are equal to <math>z^2+2az</math>, and therefore can be written as <math>(z+1)^2-1^2</math>. The whole calculation becomes
-
 
+
-
 
+
-
and adapt the constant to be
+
-
<math>a=\text{1 }</math>
+
-
so that the terms
+
-
<math>z^{2}+2z</math>
+
-
are equal to
+
-
<math>z^{2}+2az</math>,, and therefore can be written as
+
-
<math>\left( z+1 \right)^{2}-1^{2}</math>. The whole calculation becomes
+
-
 
+
-
 
+
-
<math>\underline{z^{2}+2z}+3=\underline{\left( z+1 \right)^{2}-1^{2}}+3=\left( z+1 \right)^{2}+2</math>
+
 +
{{Displayed math||<math>\underline{z^2+2z\vphantom{()}}+3 = \underline{(z+1)^2-1^2}+3 = (z+1)^2 + 2\,\textrm{.}</math>}}
-
The underline terms show the actual completion of the square.
+
The underlined terms show the actual completion of the square.

Version vom 13:27, 30. Okt. 2008

When we complete the square of the second degree expression, z2+2z+3, we start with the forumla

(z+a)2=z2+2az+a2

which we write as

(z+a)2a2=z2+2az

and adapt the constant to be a=1 so that the terms z2+2z are equal to z2+2az, and therefore can be written as (z+1)212. The whole calculation becomes

z2+2z+3=(z+1)212+3=(z+1)2+2.

The underlined terms show the actual completion of the square.