Processing Math: Done
Lösung 3.1:2c
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
We start by expanding the quadratic in the numerator, | We start by expanding the quadratic in the numerator, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\frac{(2-i\sqrt{3})^2}{1+i\sqrt{3}} | \frac{(2-i\sqrt{3})^2}{1+i\sqrt{3}} | ||
&= \frac{2^2-2\cdot 2\cdot i\sqrt{3}+(i\sqrt{3})^2}{1+i\sqrt{3}}\\[5pt] | &= \frac{2^2-2\cdot 2\cdot i\sqrt{3}+(i\sqrt{3})^2}{1+i\sqrt{3}}\\[5pt] | ||
Zeile 10: | Zeile 10: | ||
Then, we multiply top and bottom by the complex conjugate of the numerator, | Then, we multiply top and bottom by the complex conjugate of the numerator, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\frac{1-4\sqrt{3}i}{1+i\sqrt{3}} | \frac{1-4\sqrt{3}i}{1+i\sqrt{3}} | ||
&= \frac{(1-4\sqrt{3}i)(1-i\sqrt{3})}{(1+i\sqrt{3})(1-i\sqrt{3})}\\[5pt] | &= \frac{(1-4\sqrt{3}i)(1-i\sqrt{3})}{(1+i\sqrt{3})(1-i\sqrt{3})}\\[5pt] |
Version vom 13:06, 10. Mär. 2009
We start by expanding the quadratic in the numerator,
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Then, we multiply top and bottom by the complex conjugate of the numerator,
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |