Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Lösung 3.1:2c

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
We start by expanding the quadratic in the numerator,
We start by expanding the quadratic in the numerator,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\frac{(2-i\sqrt{3})^2}{1+i\sqrt{3}}
\frac{(2-i\sqrt{3})^2}{1+i\sqrt{3}}
&= \frac{2^2-2\cdot 2\cdot i\sqrt{3}+(i\sqrt{3})^2}{1+i\sqrt{3}}\\[5pt]
&= \frac{2^2-2\cdot 2\cdot i\sqrt{3}+(i\sqrt{3})^2}{1+i\sqrt{3}}\\[5pt]
Zeile 10: Zeile 10:
Then, we multiply top and bottom by the complex conjugate of the numerator,
Then, we multiply top and bottom by the complex conjugate of the numerator,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\frac{1-4\sqrt{3}i}{1+i\sqrt{3}}
\frac{1-4\sqrt{3}i}{1+i\sqrt{3}}
&= \frac{(1-4\sqrt{3}i)(1-i\sqrt{3})}{(1+i\sqrt{3})(1-i\sqrt{3})}\\[5pt]
&= \frac{(1-4\sqrt{3}i)(1-i\sqrt{3})}{(1+i\sqrt{3})(1-i\sqrt{3})}\\[5pt]

Version vom 13:06, 10. Mär. 2009

We start by expanding the quadratic in the numerator,

1+i3(2i3)2=1+i32222i3+(i3)2=1+i3443i3=1+i3143i.

Then, we multiply top and bottom by the complex conjugate of the numerator,

1+i3143i=(1+i3)(1i3)(143i)(1i3)=12(i3)2111i343i1+43ii3=1+(3)21i343i+4(3)2i2=1+31(3+43)i43=4112(1+4)3i=411453i.