Lösung 1.2:3f
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
K |
||
Zeile 1: | Zeile 1: | ||
- | We have no differentiation rule for a function raised to another function, but instead we | + | We have no differentiation rule for a function raised to another function, but instead we use the formula |
- | + | {{Displayed math||<math>a^b = e^{\ln a^b} = e^{b\ln a}\,,</math>}} | |
- | <math>a^ | + | |
which, in our case, gives | which, in our case, gives | ||
- | + | {{Displayed math||<math>x^{\tan x} = e^{\tan x\cdot\ln x}\,\textrm{.}</math>|(*)}} | |
- | <math>x^{\tan x}=e^{\tan x\ | + | |
- | (*) | + | |
Now, we obtain the derivative by first using the chain rule | Now, we obtain the derivative by first using the chain rule | ||
+ | {{Displayed math||<math>\frac{d}{dx}\,e^{\bbox[#FFEEAA;,1.5pt]{\tan x\cdot\ln x}} = {}\rlap{e^{\bbox[#FFEEAA;,1.5pt]{\tan x\cdot\ln x}}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\tan x\cdot\ln x}\bigr)'}\phantom{e^{\tan x\cdot \ln x}\bigl((\tan x)'\cdot\ln x + \tan x\cdot (\ln x)'\bigr)}</math>}} | ||
- | + | and then the product rule | |
- | + | ||
- | + | ||
- | and then the product rule | + | |
- | + | ||
- | <math>\begin{align} | + | {{Displayed math||<math>\begin{align} |
- | & =e^{\tan x\ | + | \phantom{\frac{d}{dx}\,e^{\bbox[#FFEEAA;,1.5pt]{\tan x\cdot\ln x}}}{} |
- | & =e^{\tan x\ | + | &= e^{\tan x\cdot \ln x}\bigl((\tan x)'\cdot\ln x + \tan x\cdot (\ln x)'\bigr)\\[5pt] |
- | & =e^{\tan x\ | + | &= e^{\tan x\cdot\ln x}\Bigl(\frac{1}{\cos^2\!x}\cdot\ln x + \tan x\cdot\frac{1}{x} \Bigr)\\[5pt] |
- | & =x^{\tan x}\ | + | &= e^{\tan x\cdot\ln x}\Bigl(\frac{\ln x}{\cos^2\!x} + \frac{\tan x}{x}\Bigr)\\[5pt] |
- | \end{align}</math> | + | &= x^{\tan x}\Bigl(\frac{\ln x}{\cos^2\!x} + \frac{\tan x}{x}\Bigr)\,, |
+ | \end{align}</math>}} | ||
where we have used (*) in reverse. | where we have used (*) in reverse. |
Version vom 13:24, 15. Okt. 2008
We have no differentiation rule for a function raised to another function, but instead we use the formula
\displaystyle a^b = e^{\ln a^b} = e^{b\ln a}\,, |
which, in our case, gives
\displaystyle x^{\tan x} = e^{\tan x\cdot\ln x}\,\textrm{.} | (*) |
Now, we obtain the derivative by first using the chain rule
\displaystyle \frac{d}{dx}\,e^{\bbox[#FFEEAA;,1.5pt]{\tan x\cdot\ln x}} = {}\rlap{e^{\bbox[#FFEEAA;,1.5pt]{\tan x\cdot\ln x}}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\tan x\cdot\ln x}\bigr)'}\phantom{e^{\tan x\cdot \ln x}\bigl((\tan x)'\cdot\ln x + \tan x\cdot (\ln x)'\bigr)} |
and then the product rule
\displaystyle \begin{align}
\phantom{\frac{d}{dx}\,e^{\bbox[#FFEEAA;,1.5pt]{\tan x\cdot\ln x}}}{} &= e^{\tan x\cdot \ln x}\bigl((\tan x)'\cdot\ln x + \tan x\cdot (\ln x)'\bigr)\\[5pt] &= e^{\tan x\cdot\ln x}\Bigl(\frac{1}{\cos^2\!x}\cdot\ln x + \tan x\cdot\frac{1}{x} \Bigr)\\[5pt] &= e^{\tan x\cdot\ln x}\Bigl(\frac{\ln x}{\cos^2\!x} + \frac{\tan x}{x}\Bigr)\\[5pt] &= x^{\tan x}\Bigl(\frac{\ln x}{\cos^2\!x} + \frac{\tan x}{x}\Bigr)\,, \end{align} |
where we have used (*) in reverse.