1.3 Übungen
Aus Online Mathematik Brückenkurs 2
K (Regenerate images and tabs) |
|||
Zeile 2: | Zeile 2: | ||
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
| style="border-bottom:1px solid #000" width="5px" | | | style="border-bottom:1px solid #000" width="5px" | | ||
- | {{Ej vald flik|[[1.3 Max- och minproblem| | + | {{Ej vald flik|[[1.3 Max- och minproblem|Theory]]}} |
- | {{Vald flik|[[1.3 Övningar| | + | {{Vald flik|[[1.3 Övningar|exercises]]}} |
| style="border-bottom:1px solid #000" width="100%"| | | style="border-bottom:1px solid #000" width="100%"| | ||
|} | |} | ||
- | === | + | ===exercise 1.3:1=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Determine the critical points, the inflexion points, the local extrema and global extrema. Give also the intervals where the function is strictly increasing and strictly decreasing. | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
Zeile 23: | Zeile 23: | ||
</div>{{#NAVCONTENT:Svar|Svar 1.3:1|Lösning a|Lösning 1.3:1a|Lösning b|Lösning 1.3:1b|Lösning c|Lösning 1.3:1c|Lösning d|Lösning 1.3:1d}} | </div>{{#NAVCONTENT:Svar|Svar 1.3:1|Lösning a|Lösning 1.3:1a|Lösning b|Lösning 1.3:1b|Lösning c|Lösning 1.3:1c|Lösning d|Lösning 1.3:1d}} | ||
- | === | + | ===exercise 1.3:2=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Determine the local extrema and sketch the graph of | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
Zeile 39: | Zeile 39: | ||
</div>{{#NAVCONTENT:Svar|Svar 1.3:2|Lösning a|Lösning 1.3:2a|Lösning b|Lösning 1.3:2b|Lösning c|Lösning 1.3:2c|Lösning d|Lösning 1.3:2d}} | </div>{{#NAVCONTENT:Svar|Svar 1.3:2|Lösning a|Lösning 1.3:2a|Lösning b|Lösning 1.3:2b|Lösning c|Lösning 1.3:2c|Lösning d|Lösning 1.3:2d}} | ||
- | === | + | ===exercise 1.3:3=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Determine the local extrema and sketch the graph of | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
Zeile 58: | Zeile 58: | ||
</div>{{#NAVCONTENT:Svar|Svar 1.3:3|Lösning a|Lösning 1.3:3a|Lösning b|Lösning 1.3:3b|Lösning c|Lösning 1.3:3c|Lösning d|Lösning 1.3:3d|Lösning e|Lösning 1.3:3e}} | </div>{{#NAVCONTENT:Svar|Svar 1.3:3|Lösning a|Lösning 1.3:3a|Lösning b|Lösning 1.3:3b|Lösning c|Lösning 1.3:3c|Lösning d|Lösning 1.3:3d|Lösning e|Lösning 1.3:3e}} | ||
- | === | + | ===exercise 1.3:4=== |
<div class="ovning"> | <div class="ovning"> | ||
{| width="100%" | {| width="100%" | ||
| width="95%" | | | width="95%" | | ||
- | + | Where, in the first quadrant, on the curve <math>y=1-x^2</math> should the point <math>P</math> be chosen so that the rectangle in the figure to the right has maximum area? | |
| width="5%" | | | width="5%" | | ||
||{{:1.3 - Figur - Parabeln y = 1 - x² med rektangel}} | ||{{:1.3 - Figur - Parabeln y = 1 - x² med rektangel}} | ||
Zeile 68: | Zeile 68: | ||
</div>{{#NAVCONTENT:Svar|Svar 1.3:4|Lösning |Lösning 1.3:4}} | </div>{{#NAVCONTENT:Svar|Svar 1.3:4|Lösning |Lösning 1.3:4}} | ||
- | === | + | ===exercise 1.3:5=== |
<div class="ovning"> | <div class="ovning"> | ||
{| width="100%" | {| width="100%" | ||
| width="95%" | | | width="95%" | | ||
- | + | A 30 cm wide sheet of metal is to be used to make a channel. The edges are bent upwards parallel with the sheet's long sides, as shown in the figure. How large should the angle <math>\alpha</math> be so that the channel holds as much water as possible? | |
| width="5%" | | | width="5%" | | ||
||{{:1.3 - Figur - Plåtränna}} | ||{{:1.3 - Figur - Plåtränna}} | ||
Zeile 78: | Zeile 78: | ||
</div>{{#NAVCONTENT:Svar|Svar 1.3:5|Lösning |Lösning 1.3:5}} | </div>{{#NAVCONTENT:Svar|Svar 1.3:5|Lösning |Lösning 1.3:5}} | ||
- | === | + | ===exercise 1.3:6=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | A metal cup is to be made which has the form of a vertical circular cylinder. What radius and height should the cup have if it is to have a prescribed volume <math>V</math> as well as being made of as little metal as possible? | |
</div>{{#NAVCONTENT:Svar|Svar 1.3:6|Lösning |Lösning 1.3:6}} | </div>{{#NAVCONTENT:Svar|Svar 1.3:6|Lösning |Lösning 1.3:6}} | ||
- | === | + | ===exercise 1.3:7=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | A circular sector is cut out from a circular disc and the two radial edge which result are bound together to produce a cornet. What should be angle of the removed circular sector so that the cornet has maximum volume? | |
</div>{{#NAVCONTENT:Svar|Svar 1.3:7|Lösning |Lösning 1.3:7}} | </div>{{#NAVCONTENT:Svar|Svar 1.3:7|Lösning |Lösning 1.3:7}} |
Version vom 10:03, 4. Aug. 2008
|
exercise 1.3:1
Determine the critical points, the inflexion points, the local extrema and global extrema. Give also the intervals where the function is strictly increasing and strictly decreasing.
a) | 1.3 - Figur - Grafen till övning 1.3:1a | b) | 1.3 - Figur - Grafen till övning 1.3:1b |
c) | 1.3 - Figur - Grafen till övning 1.3:1c | d) | 1.3 - Figur - Grafen till övning 1.3:1d |
exercise 1.3:2
Determine the local extrema and sketch the graph of
a) | | b) | |
c) | | d) | |
exercise 1.3:3
Determine the local extrema and sketch the graph of
a) | | b) | |
c) | | d) | |
e) | ![]() ![]() |
exercise 1.3:4
Where, in the first quadrant, on the curve | 1.3 - Figur - Parabeln y = 1 - x² med rektangel |
exercise 1.3:5
A 30 cm wide sheet of metal is to be used to make a channel. The edges are bent upwards parallel with the sheet's long sides, as shown in the figure. How large should the angle | 1.3 - Figur - Plåtränna |
exercise 1.3:6
A metal cup is to be made which has the form of a vertical circular cylinder. What radius and height should the cup have if it is to have a prescribed volume
exercise 1.3:7
A circular sector is cut out from a circular disc and the two radial edge which result are bound together to produce a cornet. What should be angle of the removed circular sector so that the cornet has maximum volume?