Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

2.2 Übungen

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Regenerate images and tabs)
Zeile 2: Zeile 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
-
{{Ej vald flik|[[2.2 Variabelsubstitution|Teori]]}}
+
{{Ej vald flik|[[2.2 Variabelsubstitution|Theory]]}}
-
{{Vald flik|[[2.2 Övningar|Övningar]]}}
+
{{Vald flik|[[2.2 Övningar|Exercises]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  
|}
|}
-
===Övning 2.2:1===
+
===Exercise 2.2:1===
<div class="ovning">
<div class="ovning">
-
Beräkna integralerna
+
Calculate the integral
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
-
|width="100%"|<math>\displaystyle \int_{1}^{2} \displaystyle\frac{dx}{(3x-1)^4}\quad</math> genom att använda substitutionen <math>u=3x-1</math>
+
|width="100%"|<math>\displaystyle \int_{1}^{2} \displaystyle\frac{dx}{(3x-1)^4}\quad</math> by using the substitution <math>u=3x-1</math>
|-
|-
|b)
|b)
-
|width="100%"| <math>\displaystyle \int (x^2+3)^5x \, dx\quad</math> genom att använda substitutionen <math>u=x^2+3</math>
+
|width="100%"| <math>\displaystyle \int (x^2+3)^5x \, dx\quad</math> by using the substitution <math>u=x^2+3</math>
|-
|-
|c)
|c)
-
|width="100%"| <math>\displaystyle \int x^2 e^{x^3} \, dx\quad</math> genom att använda substitutionen <math>u=x^3</math>
+
|width="100%"| <math>\displaystyle \int x^2 e^{x^3} \, dx\quad</math> by using the substitution <math>u=x^3</math>
|}
|}
</div>{{#NAVCONTENT:Svar|Svar 2.2:1|Lösning a|Lösning 2.2:1a|Lösning b|Lösning 2.2:1b|Lösning c|Lösning 2.2:1c}}
</div>{{#NAVCONTENT:Svar|Svar 2.2:1|Lösning a|Lösning 2.2:1a|Lösning b|Lösning 2.2:1b|Lösning c|Lösning 2.2:1c}}
-
===Övning 2.2:2===
+
===Exercise 2.2:2===
<div class="ovning">
<div class="ovning">
-
Beräkna integralerna
+
Calculate the integrals
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Zeile 38: Zeile 38:
</div>{{#NAVCONTENT:Svar|Svar 2.2:2|Lösning a|Lösning 2.2:2a|Lösning b|Lösning 2.2:2b|Lösning c|Lösning 2.2:2c|Lösning d|Lösning 2.2:2d}}
</div>{{#NAVCONTENT:Svar|Svar 2.2:2|Lösning a|Lösning 2.2:2a|Lösning b|Lösning 2.2:2b|Lösning c|Lösning 2.2:2c|Lösning d|Lösning 2.2:2d}}
-
===Övning 2.2:3===
+
===Exercise 2.2:3===
<div class="ovning">
<div class="ovning">
-
Beräkna integralerna
+
Calculate the integrals
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Zeile 59: Zeile 59:
</div>{{#NAVCONTENT:Svar|Svar 2.2:3|Lösning a|Lösning 2.2:3a|Lösning b|Lösning 2.2:3b|Lösning c|Lösning 2.2:3c|Lösning d|Lösning 2.2:3d|Lösning e|Lösning 2.2:3e|Lösning f|Lösning 2.2:3f}}
</div>{{#NAVCONTENT:Svar|Svar 2.2:3|Lösning a|Lösning 2.2:3a|Lösning b|Lösning 2.2:3b|Lösning c|Lösning 2.2:3c|Lösning d|Lösning 2.2:3d|Lösning e|Lösning 2.2:3e|Lösning f|Lösning 2.2:3f}}
-
===Övning 2.2:4===
+
===Exercise 2.2:4===
<div class="ovning">
<div class="ovning">
-
Använd formeln
+
Use the formula
<center> <math>\int \frac{dx}{x^2+1} = \arctan x + C</math> </center>
<center> <math>\int \frac{dx}{x^2+1} = \arctan x + C</math> </center>
-
för att beräkna integralerna
+
to calculate the integral
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)

Version vom 10:45, 4. Aug. 2008

 
  1. REDIRECT Template:Nicht gewählter Tab
  2. REDIRECT Template:Gewählter Tab
 

Exercise 2.2:1

Calculate the integral

a) 12dx(3x1)4  by using the substitution u=3x1
b) (x2+3)5xdx  by using the substitution u=x2+3
c) x2ex3dx  by using the substitution u=x3

Exercise 2.2:2

Calculate the integrals

a) 0cos5xdx  b) 012e2x+3dx 
c) 053x+1dx  d) 0131xdx 

Exercise 2.2:3

Calculate the integrals

a) 2xsinx2dx  b) sinxcosxdx 
c) xlnxdx  d) x+1x2+2x+2dx 
e) 3xx2+1dx  f) xsinxdx 

Exercise 2.2:4

Use the formula

dxx2+1=arctanx+C 

to calculate the integral

a) dxx2+4  b) dx(x1)2+3 
c) dxx2+4x+8  d) x2x2+1dx