Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Testsida2

Förberedande kurs i matematik

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Rad 84: Rad 84:
-
\textbf{Svar.}
+
===Övning 1.5.1===
-
\begin{enumerate}[(a)]
+
<div class="ovning">
-
\item $$
+
Beräkna <math>1002_3-234_5</math> och ge svaret i bas 8.
-
\item $$
+
 
-
\item $$
+
Tips: Konvertera talen till bas 10.
-
\item
+
</div>{{#NAVCONTENT:Svar| Svar 1.5.2a | Lösning | Lösning 1.5.2a}}
-
\end{enumerate}
+
 
-
\textbf{Övning 2} Beräkna $1002_3-234_5$ och ge svaret i bas 8.\\
+
-
\textbf{Ledning.} Konvertera talen till bas 10.\\
+
\textbf{Lösning.} Vi börjar med att konvertera $1002_3$ och $234_5$ till bas 10 för att kunna utföra subtraktion. Vi får
\textbf{Lösning.} Vi börjar med att konvertera $1002_3$ och $234_5$ till bas 10 för att kunna utföra subtraktion. Vi får
\begin{align*}
\begin{align*}

Versionen från 18 juni 2012 kl. 13.35

Innehåll

[göm]

Övning 1.2.1

Beräkna

a) 432  b) 813  c) 912  d) 025  e) 415

Övning 1.2.2

Vilken är störst, 134348832+43176  eller 32?


Övning 1.2.3

Beräkna 22+1+362+(2+3)3+344470 

Övning 1.4.1

Beräkna följande

a) 18 modulo 7 b) 345332233 modulo 2 c) 156 modulo 29 d) 334 modulo 10

Övning 1.4.2

Beräkna följande

a) 36+23 b) 36129+2186(5282100)  c) 5345+55

Övning 1.4.2

Beräkna följande

a) 36+23 b) 36129+2186(5282100)  c) 5345+55

Övning 1.5.1

Kovertera följande tal till bas 5.

a) 4 b) 5 c) 125 d) 68


Övning 1.5.1

Beräkna 100232345 och ge svaret i bas 8.

Tips: Konvertera talen till bas 10.

\textbf{Lösning.} Vi börjar med att konvertera $1002_3$ och $234_5$ till bas 10 för att kunna utföra subtraktion. Vi får \begin{align*} 1002_3=1\cdot3^3+0\cdot3^2+0\cdot3^1+2\cdot3^0=27+2=29 \end{align*} och \begin{align*} 234_5=2\cdot5^2+3\cdot5^1+4\cdot5^0=2\cdot25+3\cdot5+4=50+15+4=69 \end{align*} Alltså får vi att \begin{equation*}

1002_3-234_5=29-69=-40

\end{equation*} 40 i bas 8 är \begin{align*} 40_{10}=5\cdot8=5\cdot8^1+0\cdot8^0=10_8 \end{align*} Alltså blir svaret $1002_3-234_5=-10_8$.\\ \textbf{Svar.} $-10_8$



Övning 1.8.1

Beräkna

a) (1+2i)2i4  b) (32i)(4+i(62i))

Övning 1.8.2

Vad är realdelen/imaginärdelen till

a) 1+5i b) i


Övning 1.8.3

Det finns inget reellt tal som kvadrerat blir 1, och därför införde man talet i, definierat som 1 .

Men löser det egentligen problemet? Förskjuter vi inte bara problemet till att bestämma vad i  blir?

Inte riktigt: undersök ekvationen (a+bi)2=i, där a och b är reella tal.

Tips: Kom ihåg att om två komplexa tal är lika, så är även realdelarna lika, och imaginärdelarna är lika!

Övning 1.8.4

Vad blir i1 för något?

Tips: Pröva att förlänga bråket med något!

Övning 1.9.2

Förkorta x24y2x2+4xy+4y2 så lång som möjligt.

Övning 1.9.3

Faktorisera

a) x2+1 b) x2+y2


Övning 3.1.1

Låt A=124 och B=34. Bestäm

a) AB b) AB c) AB d) BA


Övning 3.1.2

Bestäm om följande funktioner är injektiva respektive surjektiva.

a) f: så att f(x)=x2.
b) g:+ så att g(x)=x3.

+ definieras som +=xx0

c) h:+ så att h(x)=x .
d) r definierad genom r(x)=f(g(x)).
e) s definierad genom s(x)=f(h(x)).


Övning 3.1.3

Låt f:xx0 så att f(x)=x2 och g:xx0 så att g(x)=x  Bestäm målmängd, definitionsmängd, värdemängd, surjektivitet och injektivitet för följande funktioner:

a) f
b) g
c) h(x)=f(g(x))