Processing Math: Done
1.2 Übungen
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Robot: Automated text replacement (-Answer +Antwort)) |
K (Robot: Automated text replacement (-Solution +Lösung)) |
||
Zeile 25: | Zeile 25: | ||
|width="33%"| <math>\displaystyle\frac{x \ln x}{\sin x}</math> | |width="33%"| <math>\displaystyle\frac{x \ln x}{\sin x}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Antwort|Antwort 1.2:1| | + | </div>{{#NAVCONTENT:Antwort|Antwort 1.2:1|Lösung a|Lösung 1.2:1a|Lösung b|Lösung 1.2:1b|Lösung c|Lösung 1.2:1c|Lösung d|Lösung 1.2:1d|Lösung e|Lösung 1.2:1e|Lösung f|Lösung 1.2:1f}} |
===Example 1.2:2=== | ===Example 1.2:2=== | ||
Zeile 45: | Zeile 45: | ||
|width="33%"| <math>\cos \sqrt{1-x}</math> | |width="33%"| <math>\cos \sqrt{1-x}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Antwort|Antwort 1.2:2| | + | </div>{{#NAVCONTENT:Antwort|Antwort 1.2:2|Lösung a|Lösung 1.2:2a|Lösung b|Lösung 1.2:2b|Lösung c|Lösung 1.2:2c|Lösung d|Lösung 1.2:2d|Lösung e|Lösung 1.2:2e|Lösung f|Lösung 1.2:2f}} |
===Example 1.2:3=== | ===Example 1.2:3=== | ||
Zeile 65: | Zeile 65: | ||
|width="33%"| <math>x^{\tan x}</math> | |width="33%"| <math>x^{\tan x}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Antwort|Antwort 1.2:3| | + | </div>{{#NAVCONTENT:Antwort|Antwort 1.2:3|Lösung a|Lösung 1.2:3a|Lösung b|Lösung 1.2:3b|Lösung c|Lösung 1.2:3c|Lösung d|Lösung 1.2:3d|Lösung e|Lösung 1.2:3e|Lösung f|Lösung 1.2:3f}} |
===Example 1.2:4=== | ===Example 1.2:4=== | ||
Zeile 76: | Zeile 76: | ||
|width="50%"| <math>x ( \sin \ln x +\cos \ln x )</math> | |width="50%"| <math>x ( \sin \ln x +\cos \ln x )</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Antwort|Antwort 1.2:4| | + | </div>{{#NAVCONTENT:Antwort|Antwort 1.2:4|Lösung a|Lösung 1.2:4a|Lösung b|Lösung 1.2:4b}} |
Version vom 13:33, 10. Mär. 2009
Theorie | Examples |
Example 1.2:1
Calculate the derivative of the following functions and write the answer in simplest possible form:
a) | ![]() | b) | | c) | |
d) | | e) | | f) | |
Example 1.2:2
Calculate the derivative of the following functions and write the answer in simplest possible form:
a) | | b) | | c) | ![]() |
d) | | e) | | f) | ![]() |
Example 1.2:3
Calculate the derivative of the following functions and write the answer in simplest possible form:
a) | ![]() ![]() | b) | ![]() | c) | ![]() |
d) | | e) | | f) | |
Example 1.2:4
Calculate the second derivative of the following functions and write the answer in simplest possible form:
a) | ![]() | b) | |