Processing Math: 86%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

4.1 Winkel und Kreise

Aus Online Mathematik Brückenkurs 1

Wechseln zu: Navigation, Suche
       Theorie          Übungen      

Inhalt:

  • Verschiedene Winkelmaße (Grade und Radianten)
  • Der Satz des Pythagoras
  • Die Formel für den Abstand zwischen zwei Punkten
  • Die Gleichung eines Kreises

Lernziele:

Nach diesem Abschnitt solltest Du folgendes können :

  • Winkel von Graden auf Radianten umwandeln.
  • Die Fläche und Länge eines Kreissektors berechnen.
  • Die Begriffe Kathete und Hypotenuse kennen.
  • Das Gesetz des Pythagoras kennen und beherrschen.
  • Den Abstand zwischen zwei Punkten berechnen.
  • Kreise zeichnen, die durch eine Gleichung definiert sind.
  • Die Begriffe Einheitskreis, Tangente, Radius, Durchmesser, Umkreis, Sehne und Kreissektor kennen.
  • Geometrische Probleme mit Kreisen lösen.

Die Lernziele sind Dir aus der Schule noch bestens vertraut und Du weißt ganz genau, wie man die zugehörigen Rechnungen ausführt? Dann kannst Du auch gleich mit den Prüfungen beginnen (Du findest den Link in der Student Lounge).

A - Winkeleinheiten

Es gibt viele verschiedene Winkeleinheiten, die in verschiedenen Bereichen verwendet werden. Die zwei häufigsten sind Grad und Radiant.

  • Grad. Wenn man einen Kreis in 360 gleich große Stücke aufteilt, wird jedes Teil ein Grad genannt. Man bezeichnet die Einheit Grad mit .
  • Radiant. Eine andere Winkeleinheit ist der Radiant. Der Radiant wird oft rad geschrieben. Ein Radiant wird definiert dadurch, dass ein Kreis den Winkel 2 rad hat.


Ein Vollwinkel besteht aus 360 oder 2 rad, also ist

1=13602  radians =180  radians,1  radian =12360=180.

Mit diesem Verhältnis kann man Winkel von den Einheiten Grad in Radiant umwandeln.

Beispiel 1

  1. 30=301=30180  rad =6  rad
  2. 8  radians =8(1rad)=8180=225

Manchmal spricht man von Winkeln, die negativ oder größer als 360 sind. Dies bedeutet, dass ein Punkt am Kreis durch mehrere Winkel repräsentiert werden kann.

[Image]

Beispiel 2

  1. Die Winkel 55 und 665 repräsentieren denselben Punkt, weil
    55+2360=665.
  2. Die Winkel 73 und 711 repräsentieren denselben Punkt, weil
    732=711.
  3. Die Winkel 36 und 216 repräsentieren nicht denselben Punkt, weil
    36+180=216.

Neben dem Vollwinkel sind noch folgende Ausdrücke von Bedeutung:

  • Spitzer Winkel: Ein Winkel, der kleiner ist als 41 des Vollwinkels. Also für einen Winkel x: 0x90 bzw. 2
  • Rechter Winkel: Ein Winkel von genau 90 bzw. 2.
  • Stumpfer Winkel: Ein Winkel, der größer als 41 aber kleiner als 21 des Vollwinkels ist. Also für einen Winkel x: 90 bzw. 2x180 bzw.

B - Abstand zwischen zwei Punkten

Der Satz des Pythagoras ist einer der berühmtesten Sätze der Mathematik. Der Satz des Pythagoras sagt: wenn a und b die Katheten eines rechtwinkligen Dreiecks sind und c die Hypotenuse, dann gilt:

Satz des Pythagoras:
c2=a2+b2.

[Image]

Beispiel 3

Wir erhalten c durch den Satz des Pythagoras:
c2=32+42=9+16=25

und daher ist

c=25=5. 

[Image]

Der Satz des Pythagoras kann verwendet werden, um den Abstand zwischen zwei Punkten zu bestimmen.

Abstand zwischen zwei Punkten:

Der Abstand d zwischen den Punkten (xy) und (ab) ist

d=(xa)2+(yb)2. 

Die Gerade zwischen den beiden Punkten ist die Hypotenuse eines Dreiecks, wobei die Katheten parallel zu den Koordinatenachsen sind.

[Image]

Die Katheten des Dreiecks sind die Unterschiede in x- bzw. in y-Richtung der Punkte, also xa und yb. Durch den Satz des Pythagoras erhalten wir den Abstand zwischen den Punkten.

Beispiel 4

  1. Der Abstand zwischen (12) und (31) ist
    d=(13)2+(21)2=(2)2+12=4+1=5. 
  2. Der Abstand zwischen (10) und (25) ist
    d=(1(2))2+(0(5))2=12+52=1+25=26. 


C - Kreise

Ein Kreis besteht aus allen Punkten, die auf dem Abstand r von einem bestimmten Punkt (ab) liegen.

[Image]

Der Abstand r ist der Radius des Kreises und der Punkt (ab) dessen Mittelpunkt. Das Bild zeigt andere wichtige Begriffe eines Kreises.

[Image]

[Image]

[Image]

[Image]

Durchmesser Tangente Sehne Sekante

[Image]

[Image]

[Image]

[Image]

Kreisbogen Umfang Sektor eines Kreises Segment eines Kreises


Nützliche Formeln zur Berechnung des Kreisumfanges und der Kreisfläche.

Kreisumfang =2r

Kreisfläche =r2


Beispiel 5

Ein Kreisbogen ist in der Figur eingezeichnet.
  1. Bestimme die Länge des Kreisbogens

    Der Winkel 50 ist in Radianten
    50=501=50180  rad =185  rad.

[Image]

  1. Laut Definition des Radianten ist die Länge des Kreisbogens der Winkel in Radianten multipliziert mit dem Radius
    3185  Einheiten =65  Einheiten .
  1. Bestimmen sie die Fläche des Kreissektors

    Der Kreissektor nimmt den Anteil
    50360=536

    der Fläche des Kreises ein. Deshalb ist die Fläche des Kreissektors 536 von der ganzen Fläche des Kreises, welche r2=32=9 ist. Also ist die Fläche des Kreissektors

    5369  Einheiten =45  Einheiten.

Die Punkte (xy), die auf dem Kreis mit dem Mittelpunkt (ab) und dem Radius r liegen, können durch die Formel für den Abstand zwischen zwei Punkten beschrieben werden.

Die Gleichung eines Kreises:
(xa)2+(yb)2=r2.

[Image]

Beispiel 6

  1. (x1)2+(y2)2=9 ist die Gleichung eines Kreises mit dem Mittelpunkt (12) und dem Radius 9=3 .

[Image]

  1. x2+(y1)2=1: Es gilt (x0)2+(y1)2=1, also ist dies die Gleichung eines Kreises mit dem Mittelpunkt (01) und dem Radius 1=1 .

[Image]

  1. (x+1)2+(y3)2=5: es ist (x(1))2+(y3)2=5, also ist dies Gleichung eines Kreises mit dem Mittelpunkt (13) und dem Radius 52.236 .

[Image]

Beispiel 7

  1. Liegt der Punkt (12) auf dem Kreis (x4)2+y2=13?

    Wir kontrollieren, ob x=1 und y=2 die Gleichung des Kreises erfüllen:
    linke Seite =(14)2+22=(3)2+22=9+4=13=Rechte Seite.

    Nachdem der Punkt die Gleichung des Kreises erfüllt, liegt er auf dem Kreis.

    [Image]

  2. Bestimmen Sie die Gleichung für den Kreis, der den Mittelpunkt (34) hat und durch den Punkt (10) geht.

    Nachdem der Punkt (10) auf dem Kreis liegt, muss der Abstand zwischen diesem Punkt und dem Mittelpunkt (34) der Radius des Kreises sein. Also haben wir
    c=(31)2+(40)2=4+16=20 

    und die Gleichung des Kreises lautet:

    (x3)2+(y4)2=20.

    [Image]


Beispiel 8

Bestimme den Mittelpunkt und Radius des Kreises mit der Gleichung \displaystyle \ x^2 + y^2 – 2x + 4y + 1 = 0.


Wir wollen die Gleichung des Kreises auf die Form

\displaystyle (x – a)^2 + (y – b)^2 = r^2

bringen. Dann können wir den Mittelpunkt direkt als \displaystyle (a,b) ablesen, und den Radius als \displaystyle r.

Wir benutzen zuerst die quadratische Ergänzung für alle \displaystyle x-Terme auf der linken Seite

\displaystyle

\underline{x^2-2x\vphantom{(}} + y^2+4y + 1 = \underline{(x-1)^2-1^2} + y^2+4y + 1

(Wir haben nur die unterstrichenen Terme verändert)

Jetzt benutzen wir die quadratische Ergänzung für alle \displaystyle y-Terme

\displaystyle

(x-1)^2-1^2 + \underline{y^2+4y} + 1 = (x-1)^2-1^2 + \underline{(y+2)^2-2^2} + 1\,\mbox{.}

Die linke Seite ist also

\displaystyle (x-1)^2 + (y+2)^2-4

Wenn wir 4 zu beiden Seiten addieren, erhalten wir

\displaystyle (x-1)^2 + (y+2)^2 = 4 \, \mbox{.}

Also hat der Kreis den Mittelpunkt \displaystyle (1,-2) und den Radius \displaystyle \sqrt{4}= 2.

[Image]



Noch Fragen zu diesem Kapitel? Dann schau nach im Kursforum (Du findest den Link in der Student Lounge) oder frag nach per Skype bei ombTutor My status My status

Keine Fragen mehr? Dann mache weiter mit den Übungen .


Tipps fürs Lernen

Diagnostische Prüfung und Schlussprüfung

Nachdem du mit der Theorie und den Übungen fertig bist, solltest Du die diagnostische Prüfung und die Schlussprüfung machen. Du findest die Links zu den Prüfungen in Deiner "Student Lounge".

Bedenken Sie folgendes:


Literaturhinweise

Für die, die tiefer in die Materie einsteigen wollen, sind hier einige Links angeführt:


Mehr über den Satz des Pythagoras in der Wikipedia

Lies mehr über Kreise auf Mathworld (engl.)


Nützliche Websites

Interaktive Experimente: Sinus und Cosinus im Einheitskreis (Flash)