Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Testsida2

Förberedande kurs i matematik

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Rad 213: Rad 213:
|}
|}
</div>{{#NAVCONTENT:Svar a)| Svar 2.1.5a | Svar b) | Svar 2.1.5b | Svar c) | Svar 2.1.5c | Lösning a)| Lösning 2.1.5a | Lösning b) | Lösning 2.1.5b | Lösning c) | Lösning 2.1.5c}}
</div>{{#NAVCONTENT:Svar a)| Svar 2.1.5a | Svar b) | Svar 2.1.5b | Svar c) | Svar 2.1.5c | Lösning a)| Lösning 2.1.5a | Lösning b) | Lösning 2.1.5b | Lösning c) | Lösning 2.1.5c}}
 +
 +
===Övning 2.1.6===
 +
<div class="ovning">
 +
Lös ekvationen <math>-2x^2+10x=12</math> med hjälp av pq-formeln.
 +
</div>{{#NAVCONTENT:Svar| Svar 2.1.6a | Lösning| Lösning 2.1.6a}}
===Övning 3.1.1===
===Övning 3.1.1===

Versionen från 21 juni 2012 kl. 12.50

Innehåll

[göm]

Övning 1.2.1

Beräkna

a) 432  b) 813  c) 912  d) 025  e) 415

Övning 1.2.2

Vilken är störst, 134348832+43176  eller 32?


Övning 1.2.3

Beräkna 22+1+362+(2+3)3+344470 

Övning 1.4.1

Beräkna följande

a) 18 modulo 7 b) 345332233 modulo 2 c) 156 modulo 29 d) 334 modulo 10

Övning 1.4.2

Beräkna följande

a) 36+23 b) 36129+2186(5282100)  c) 5345+55

Övning 1.4.2

Beräkna följande

a) 36+23 b) 36129+2186(5282100)  c) 5345+55

Övning 1.5.1

Kovertera följande tal till bas 5.

a) 4 b) 5 c) 125 d) 68


Övning 1.5.2

Beräkna 100232345 och ge svaret i bas 8.

Tips: Konvertera talen till bas 10.

Övning 1.8.1

Beräkna

a) (1+2i)2i4  b) (32i)(4+i(62i))

Övning 1.8.2

Vad är realdelen/imaginärdelen till

a) 1+5i b) i


Övning 1.8.3

Det finns inget reellt tal som kvadrerat blir 1, och därför införde man talet i, definierat som 1 .

Men löser det egentligen problemet? Förskjuter vi inte bara problemet till att bestämma vad i  blir?

Inte riktigt: undersök ekvationen (a+bi)2=i, där a och b är reella tal.

Tips: Kom ihåg att om två komplexa tal är lika, så är även realdelarna lika, och imaginärdelarna är lika!

Övning 1.8.4

Vad blir i1 för något?

Tips: Pröva att förlänga bråket med något!

Övning 1.9.2

Förkorta x24y2x2+4xy+4y2 så lång som möjligt.

Övning 1.9.3

Faktorisera

a) x2+1 b) x2+y2


Övning 1.9.4

Låt z=a+bi och w=c+di vara godtyckliga komplexa tal. Avgör vilka av följande påståenden stämmer:

a) Re(z)=Re(z)
b) Im(z)=Im(z)
c) Re(z)=21(z+z)
d) z+w=z+w
e) z+w=2Re(z)+2Re(w)zw

Övning 2.1.2

Hur många reella rötter har följande polynom?

a) 3x+2 b) x22x3 c) x2+4x+5

Övning 2.1.3

Är 3 ett polynom?

Övning 2.1.4

Polynom kan som bekant även ha komplexa koefficienter. Hitta rötterna till x2+ix.


Övning 2.1.5

Finn rötterna till dessa polynom genom att faktorisera.

a) x24 b) x26x+9 c) x3+4x2+4x

Övning 2.1.6

Lös ekvationen 2x2+10x=12 med hjälp av pq-formeln.

Övning 3.1.1

Låt A=124 och B=34. Bestäm

a) AB b) AB c) AB d) BA


Övning 3.1.2

Bestäm om följande funktioner är injektiva respektive surjektiva.

a) f: så att f(x)=x2.
b) g:+ så att g(x)=x3.

+ definieras som +=xx0

c) h:+ så att h(x)=x .
d) r definierad genom r(x)=f(g(x)).
e) s definierad genom s(x)=f(h(x)).


Övning 3.1.3

Låt f:xx0 så att f(x)=x2 och g:xx0 så att g(x)=x  Bestäm målmängd, definitionsmängd, värdemängd, surjektivitet och injektivitet för följande funktioner:

a) f
b) g
c) h(x)=f(g(x))