Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

2.1 Übungen

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-Selected tab +Gewählter Tab))
K (Robot: Automated text replacement (-Not selected tab +Nicht gewählter Tab))
Zeile 2: Zeile 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
-
{{Not selected tab|[[2.1 Einführung zur Integralrechnung|Theorie]]}}
+
{{Nicht gewählter Tab|[[2.1 Einführung zur Integralrechnung|Theorie]]}}
{{Gewählter Tab|[[2.1 Übungen|Übungen]]}}
{{Gewählter Tab|[[2.1 Übungen|Übungen]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  

Version vom 13:42, 10. Mär. 2009

       Theorie          Übungen      

Übung 2.1:1

Interpret each integral as an area, and determine its value.

a) 212dx  b) 01(2x+1)dx 
c) 02(32x)dx  d) 21xdx 

Übung 2.1:2

Calculate the integrals

a) 02(x2+3x3)dx  b) 21(x2)(x+1)dx 
c) 49x1xdx  d) 14x2xdx 

Übung 2.1:3

Calculate the integrals

a) sinxdx  b) 2sinxcosxdx 
c) e2x(ex+1)dx  d) xx2+1dx 

Übung 2.1:4

a) Calculate the area between the curve y=sinx and the x-axis when 0x45.
b) Calculate the area under the curve y=x2+2x+2 and above the x-axis.
c) Calculate the area of the finite region between the curves y=41x2+2 and y=881x2 (Swedish A-level 1965).
d) Calculate the area of the finite region enclosed by the curves y=x+2y=1 and y=x1.
e) Calculate the area of the region given by the inequality, x2yx+2.

Übung 2.1:5

Calculate the integral

a) dxx+9x  (Hint: multiply the top and bottom by the conjugate of the denominator)
b) sin2x dx  (Hint: rewrite the integrand using a trigonometric formula)